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Summary: We derive a simple theory describing 

tidal dissipation in the regolith layer of rubble-pile bi-

nary asteroids [1]. The theory agrees with inferred tidal 

dissipation rates if the regolith thickness is independent 

of body size. Applications to wobble, librations and ec-

centricity/semi-major axis excitation are discussed. 

Introduction: The tidal response of a body provides 

information on its internal structure and mechanical 

properties [2]. The rate of tidal dissipation depends on 

k2/Q or alternatively 1/Q, where k2 is the tidal Love 

number (giving the response amplitude), Q is the dissi-

pation factor (giving the response phase) and  is the 

effective rigidity [3,4]. 

Observations: Jacobson and Scheeres [5] used bi-

nary asteroids to determine k2/Q, by assuming that the 

observed semi-major axis was a result of equilibrium 

between tidal dissipation and the binary YORP effect. 

An alternative [6] is to neglect the second effect and in-

stead assume a system age; this yields a higher (less dis-

sipative) k2/Q value. A recent astrometric study of 

1996FG3 [7] showed no semi-major axis evolution and 

thus supports the equilibrium assumption.  

Theory: An important theoretical treatment by [8] 

showed that yielding in rubble-pile asteroids results in 

an effective rigidity much less than that of a monolithic 

body, and predicts that k2 scales with primary radius R.  

Figure 1: Sketch of the geometry of the problem. Tidal de-

formation is represented by the departure of the solid surface 

from the mean shape (dashed lines) and results in shear 

strains (indicated by half-arrows). 

 

We focus on tidal dissipation in a regolith layer of 

thickness t (Figure 1). The motion of the tidal bulge rel-

ative to the surface results in shearing motion of indi-

vidual regolith blocks. On a single block face the fric-

tional dissipation rate depends on the shear stress, the 

surface area and the sliding velocity, and is given by 

 

   (1) 

 

where  is the density, g the surface acceleration, r 

the block size, u the relative displacement between 

neighbouring faces, p the spin rate and f the friction 

coefficient.  The displacement depends on the tidal 

strain  and the block dimensions and may be written 

 

(2) 

 

 

where H is the amplitude of the tidal bulge, h2 is the 

tidal displacement Love number, q is the mass ratio be-

tween secondary and primary, n is the mean motion of 

the secondary and G is the gravitational constant. 

Combining equations (1) and (2) we derive the total 

dissipation rate in the regolith layer of 

 

  𝐸�̇�~𝑁𝑓ℎ2𝑀𝑞𝑛2Ω𝑝𝑡2            (3) 

 

Here N (~3 for a roughly cubic element) is the num-

ber of faces per element, m is the mass of the secondary 

and we have dropped the (1+q) term which is generally 

close to unity. The t2 term arises because increasing t 

increases the overburden pressure and the total dissipa-

tive volume. As expected, dissipation increases with 

friction coefficient, forcing frequency and displacement 

(h2); it is also independent of the element size r, as long 

as r<<t. 

Equation (3) may be compared with the conven-

tional expression for tidal dissipation in a non-synchro-

nous body [9] to derive an effective Q, given by 

 
where here we have assumed that h2≈k2.  

This result may then be combined with the predic-

tion of [8] to derive equation (4): 

 
The same result can also be used to predict the quan-

tity Q, here given in SI units: 

 

(5)  

Comparison with observations: We use the ap-

proach of [5] but with an expanded catalogue of asteroid 

binaries, from [10] and using a BYORP parameter 



B=10-2 [7]. The inferred Q/k2 as function of body radius 

is shown in Fig 2. As noted by [5], the inferred Q/k2 

scales roughly with R (or R1.5), which is opposite to the 

prediction of [8] if Q is constant. In contrast, the obser-

vations are consistent with equation (4) if t is constant, 

or decreases slightly with radius. Furthermore, the de-

pendence on qn2, shown by colours in Figure 2, is also 

approximately consistent with equation (4) 

 
Figure 2: Dots are data plotted from [1] taking B = 10−2 

(see text); colour indicates the quantity qn2. Star is 

(175706) 1996 FG3 [7]. Dashed line shows least-

squares fit to the data, with a gradient of 1.51. Col-

oured lines use equation 4 with three different values 

of qn2 (10−8.5, 10−9.5 , 10−10.5 s−2 ) and t=30 m. 
 

A further observation of relevance is a study of tum-

bling asteroids by [11]. These authors argue that the 

damping timescale for such tumbling is approximately 

independent of radius. For this to be the case, Q would 

need to scale as R2. Our simple analysis (equation 5) 

predicts an R3 dependence; thus, there is qualitative but 

not quantitative agreement. 

Regolith Thickness: Figure 2 suggests that the reg-

olith thickness t~30m, independent of body radius. Only 

rather scanty estimates of regolith thickness are availa-

ble: a few metres or more on Itokawa (R=0.17 km) [12]; 

30-200 m on Gaspra (R=6.1 km) [13]; up to a few tens 

of metres on Eros (R=8.4 km) [14]; 100-200 m on Pho-

bos (R=11.3 km) [15]; ~50m on Ida (R=15.7 km) [16]. 

Based on these results it certainly seems as if regolith 

thickness varies only rather weakly with radius, and a 

~30m thickness would be hard to rule out. A theoretical 

study by [17] argued that the expected regolith thickness 

is tens of metres, and should decrease slightly with R. 

This prediction is in good agreement with our results.  

Application to wobble: For an isolated rubble-pile 

asteroid undergoing a wobble of amplitude  the dissi-

pation rate within a regolith layer is 

𝐸�̇�~𝑁𝑓ℎ2𝑀𝛼Ω𝑤Ω𝑝
2𝑡2  (6) 

which is analogous to equation (3) with the strain 

rate determined by the rotational bulge, the wobble 

angular frequency w and amplitude . The quantity w 

is smaller than p by a factor of h2p
2/G [18]. Using 

the total wobble energy from [18], the damping time-

scale may be written  
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Ω𝑝
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The damping timescale decreases with increasing 

friction or bulge amplitude (h2) as expected. For a 

Bennu-size asteroid, R~300m implies h2~3x10-6 [8]. For 

a regolith thickness of 30m the damping timescale is 

then ~106 rotation periods, or ~103 years. Spacecraft 

missions should be capable of measuring such damping. 

The damping timescale is shorter than conventional es-

timates [18], primarily because h2 is larger than the 

equivalent calculation for a monolithic body.  

Eccentricity & semi-major axis excitation: In 

BYORP equilibrium the eccentricity of the secondary is 

expected to be constant [5]. However, for binaries not 

in equilibrium, dissipation in the primary is expected to 

dominate [19], which will excite the secondary’s eccen-

tricity and increase its semi-major axis. The character-

istic timescale for both processes is  
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where a is the semi-major axis. For a=3R this time-

scale is ~0.3 Myr, short compared to solar system time-

scales and potentially measurable via astrometry. 

Librations:  Dissipation will change the amplitude 

and phase of the forced librations of body, such as Pho-

bos. However, the phase lag depends on k2/Q [20,21] 

and will thus be too small to measure directly. In con-

trast, damping of excited free librations (e.g. the Janus-

Epimetheus pair [22]) for rubble-pile bodies is expected 

to be rapid and potentially measurable.  
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